151k views
2 votes
The function f(x) = - 4x ^ 3 + 27.24x ^ 2 + 220.4352x - 4.76 is increasing on the open interval

The function f(x) = - 4x ^ 3 + 27.24x ^ 2 + 220.4352x - 4.76 is increasing on the-example-1

1 Answer

2 votes

Given:

The function is:


f(x)=-4x^3+27.24x^2+220.4352x-4.76

Find:

(a)

The increase in the open interval

(b)

The decrease in the open interval

(c)

The local maximum

Explanation-:

The function is:


f(x)=-4x^3+27.24x^2+220.4352x-4.76

The first derivative of a function is:


f^(\prime)(x)=-12x^2+54.58x+220.4352

For increasing at x


\begin{gathered} f^(\prime)(x)>0 \\ \\ f(x)\text{ Increasing at }x \end{gathered}

For decreasing at x


\begin{gathered} f^(\prime)(x)<0 \\ \\ f(x)\text{ is decreasing at }x \end{gathered}

f'(x) is zero at a critical point:


\begin{gathered} f^(\prime)(x)=0 \\ \\ -12x^2+54.58x+220.4352=0 \\ \\ x=-(129)/(50)\text{ and }x=(178)/(25) \end{gathered}

So, the interval of increase is:


\text{ Increasing open interval }=(-(129)/(50),(178)/(25))

The decreasing interval is all value - increasing interval.

So,

Decreasing interval is:


=(-\infty,-(129)/(50))\cup((178)/(25),\infty)

The function local maxima is:

The local maxima


\begin{gathered} f^(\prime)(x)=0 \\ \\ \text{ At }x=-(129)/(50)\text{ and }x=(178)/(25) \\ \end{gathered}

For local maxima check the function value:


\begin{gathered} f(x)=f(-(129)/(50)) \\ \\ =-4(-(129)/(50))^3+27.24((-129)/(50))^2+220.4352(-(129)/(50))-4.76 \\ \\ =-323.468 \end{gathered}

Check the value of another critical point:


\begin{gathered} f(x)=f((178)/(25)) \\ \\ =-4((178)/(25))^3+27.24((178)/(25))^2+220.4352((178)/(25))-4.76 \\ \\ =1501.8776 \end{gathered}

So, the local maxima at


x=(178)/(25)

The local maxima is 178/25

User Nkosi
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories