If AB is the diameter, it means the arc ACB is a semicircle (arc of 180°).
So, to calculate the radius of the circle, we can use the following rule of three:
![\begin{gathered} \text{arc}\to\text{length} \\ 360\degree\to2\pi r \\ 180\degree\to x \\ (360)/(180)=(2\pi r)/(x) \\ 2=(2\pi r)/(x) \\ 2x=2\pi r \\ x=\pi r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5navsq907grmhx1orifeg1mlbtb9yugl2p.png)
The length of a semicircle is given by πr. If this arc measures 6π, we have:
![\begin{gathered} \pi r=6\pi \\ (\pi r)/(\pi)=(6\pi)/(\pi) \\ r=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9rxg2rkviawqonbwrirorq7mgkf8mdgye.png)
So the radius of this circle is equal 6 units.