165k views
0 votes
Pre-Calc I need the answers to for sin and tan.

Pre-Calc I need the answers to for sin and tan.-example-1

1 Answer

6 votes

Given:


\sin (\alpha)/(2)=(15)/(17),90^(\circ)<\alpha<180^(\circ)

Now,


\begin{gathered} 90^(\circ)<\alpha<180^(\circ) \\ \text{replace }\alpha\text{ by }(\alpha)/(2) \\ (90^(\circ))/(2)<(\alpha)/(2)<(180^(\circ))/(2) \\ 45^(\circ)<(\alpha)/(2)<90^(\circ) \\ So,\text{ }(\alpha)/(2)\text{ lies in first quadrant} \\ \Rightarrow\sin (\alpha)/(2),\text{ cos}(\alpha)/(2)\text{ and tan}(\alpha)/(2)\text{ are positive.} \end{gathered}

As we know that,


\begin{gathered} \sin 2\alpha=2\sin \alpha\cos \alpha \\ \text{ replace }\alpha\text{ with }(\alpha)/(2) \\ \sin 2((\alpha)/(2))=2\sin (\alpha)/(2)\cos (\alpha)/(2) \\ \sin \alpha=2\sin (\alpha)/(2)\cos (\alpha)/(2) \\ 2\sin (\alpha)/(2)\cos (\alpha)/(2)=(15)/(17) \\ \sin (\alpha)/(2)\cos (\alpha)/(2)=(15)/(34)\ldots\ldots\ldots.\ldots(1) \end{gathered}

Now, find the cosine function,


\begin{gathered} \sin ^2\alpha+\cos ^2\alpha=1 \\ ((15)/(17))^2+\cos ^2\alpha=1 \\ \text{cos}^2\alpha=1-(225)/(289) \\ \cos ^2\alpha=(64)/(289) \\ \cos \alpha=\pm(8)/(17) \\ \Rightarrow\cos \alpha=-(8)/(17)\ldots.(90^(\circ)\text{<}\alpha<180^(\circ)) \end{gathered}

Using the identity,


\begin{gathered} \cos \alpha=2\cos ^2(\alpha)/(2)-1 \\ -(8)/(17)=2\cos ^2(\alpha)/(2)-1 \\ 2\cos ^2(\alpha)/(2)=1-(8)/(17) \\ \cos ^2(\alpha)/(2)=(9)/(17*2) \\ \cos (\alpha)/(2)=\pm\sqrt[]{(9)/(34)} \\ \Rightarrow\cos (\alpha)/(2)=\frac{3}{\sqrt[]{34}}\ldots..(45^(\circ)<(\alpha)/(2)<90^(\circ)) \end{gathered}

From equation (1),


\begin{gathered} \sin (\alpha)/(2)\cos (\alpha)/(2)=(15)/(34) \\ \sin (\alpha)/(2)*\frac{3}{\sqrt[]{34}}=(15)/(34) \\ \sin (\alpha)/(2)=(15)/(34)*\frac{\sqrt[]{34}}{3} \\ \sin (\alpha)/(2)=\frac{5\sqrt[]{34}}{34} \end{gathered}

And,


\tan (\alpha)/(2)=(\sin(\alpha)/(2))/(\cos(\alpha)/(2))=\frac{\frac{5\sqrt[]{34}}{34}}{\frac{3}{\sqrt[]{34}}}=\frac{5\sqrt[]{34}}{34}*\frac{\sqrt[]{34}}{3}=(5)/(3)

Answer:


\begin{gathered} \sin (\alpha)/(2)=\frac{5\sqrt[]{34}}{34} \\ \tan (\alpha)/(2)=(5)/(3) \end{gathered}

User Sush
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories