Given
The table which represents a quadratic equation is,a
To find the options which are true for the quadratic equation.
Step-by-step explanation:
It is given that,
Then, the quadratic equation is of the form,
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
Put x=0 and y=5 in the above equation.
That implies,
![\begin{gathered} 5=a(0)^2+b(0)+c \\ 5=c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dt921y59yazz0g20btk01fv4sejt1pfevr.png)
Then, the quadratic equation becomes,
![y=ax^2+bx+5](https://img.qammunity.org/2023/formulas/mathematics/college/kmm3cnn0tjyyyb26pk1krxitga10a7fw6p.png)
Put x=-1, y=7 and x=1, y=7 in the above equation.
That implies,
![\begin{gathered} 7=a(-1)^2+b(-1)+5 \\ 7=a-b+5\text{ \_\_\_\_\_\_\_\_\lparen1\rparen} \\ 7=a(1)^2+b(1)+5 \\ 7=a+b+5\text{ \_\_\_\_\_\_\_\lparen2\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s9qfx77c5n2cb1gv6slb2a5h4uchf7sfmw.png)
Adding (1) and (2) implies,
![\begin{gathered} 2a+10=14 \\ 2a=14-10 \\ 2a=4 \\ a=(4)/(2) \\ a=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/srjrdyo18p5jid41izkhesebyv3bhmp1wg.png)
And,
![\begin{gathered} 7=2-b+5 \\ 7=-b+7 \\ b=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8f2knpobko3wun6ifvr6hsv9uev88bnew.png)
Hence, the quadratic equation is,
![y=2x^2+5](https://img.qammunity.org/2023/formulas/mathematics/college/viq09hfuxlacwgkho7jb2xn6sfsm72io1h.png)
Now,
That implies,
The graph is opened up and the graph has one x-intercept.