hello
to solve this problem, we would simply use the formula of compound interest
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ A=\text{compounded interest} \\ p=\text{ principal} \\ r=\text{rate} \\ n=\text{ number of times compounded} \\ t=\text{time} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r6d4zzyqv9dgzsb1d5qyf43qklpc9q7mck.png)
from this, we can write out our data and then substitute it into the formula
![\begin{gathered} a=\text{ ?} \\ p=100 \\ r=4\text{ \%=0.04} \\ n=12 \\ t=25\text{ years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k5qzxk4zm1vna76kc1n8jt0uy11x89sy71.png)
![\begin{gathered} A=p(1+(r)/(n))^(nt) \\ A=100*(1+(0.04)/(12))^(12*25) \\ A=100*(1+0.003)^(300) \\ A=100*(1.003)^(300) \\ A=100*2.456 \\ A=245.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t77sluhpeqh918gz43x1drlkixe4geinmq.png)
in 25 years, i will have the sum of $245.6 after compounding $100 monthly at 4% interest rate