As given by the question
There are given that the golf ball covers a horizontal distance of 301.5 m.
Now,
![\begin{gathered} R=301.5\text{ m} \\ \theta=25^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/561zqcsa9h0eln75vzn19guegqhk7okpp2.png)
The vertical motion is:
![v=u+at](https://img.qammunity.org/2023/formulas/mathematics/high-school/noa8ap485tcbqe59xpwvgja2yjtndl0d9d.png)
Where
![\begin{gathered} v=u\sin \theta \\ u=0\text{ m/s} \\ a=-gm/s^(\square) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/86o8n65wjj7mr32ihk16kafomtmd9nukm1.png)
Put the value
![t=(2u\sin \theta)/(g)](https://img.qammunity.org/2023/formulas/mathematics/college/bvr8wwc5k8p225aceo6p2pvmstint22ce1.png)
Then,
The range of projectile motion :
![\begin{gathered} R=(u^2\sin ^2\theta)/(g) \\ u^2=393.59g \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrra0i2wppn4ykzvqo2nozgsc0m6yrd7xp.png)
And,
The height
![\begin{gathered} H=(u^2*\sin^2\theta)/(2g) \\ H=\frac{393.59^{}*\sin ^2(25)}{2g} \\ H=35.15\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ryiv6fezoyvppaq3130wbhbn5bccoyr2yt.png)
Hence, the maximum height that can reach by the ball is 35.15 m