192k views
2 votes
Graph the equation f(x) = (x-2)^2 - 4

1 Answer

4 votes

Step-by-step explanation:

We were given the equation:


f\mleft(x\mright)=(x-2)^2-4

We will proceed to expand the equation as shown below:


\begin{gathered} f\mleft(x\mright)=(x-2)^2-4 \\ f(x)=x(x-2)-2(x-2)-4 \\ f(x)=x^2-2x-2x+4-4 \\ f(x)=x^2-4x \end{gathered}

We will proceed to graph the equation derived above as shown below:


\begin{gathered} f(x)=x^(2)-4x \\ \\ when:x=-4 \\ f(x)=(-4)^2-4(-4)=16+16=32 \\ (x,y)=(-4,32) \\ \\ when:x=-3 \\ f(x)=(-3)^2-4(-3)=9+12=21 \\ (x,y)=(-3,21) \\ \\ when:x=-2 \\ f(x)=(-2)^2-4(-2)=4+8=12 \\ (x,y)=(-2,12) \\ \\ when:x=-1 \\ f(x)=(-1)^2-4(-1)=1+4=5 \\ (x,y)=(-1,5) \\ \\ when:x=0 \\ f(x)=0^2-4(0)=0 \\ (x,y)=(0,0) \\ \\ when:x=1 \\ f(x)=1^2-4(1)=1-4=-3 \\ (x,y)=(1,-3) \\ \\ when:x=2 \\ f(x)=2^2-4(2)=4-8=-4 \\ (x,y)=(2,-4) \\ \\ when:x=3 \\ f(x)=3^2-4(3)=9-12=-3 \\ (x,y)=(3,-3) \\ \\ when:x=4 \\ f(x)=4^2-4(4)=16-16=0 \\ (x,y)=(4,0) \\ \\ when:x=8 \\ f(x)=8^2-4(8)=64-32=32 \\ (x,y)=(8,32) \end{gathered}

We will plot this on a graph, we have:

Graph the equation f(x) = (x-2)^2 - 4-example-1
User Adrian Romanelli
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories