We will determine the surface area of the cylinder as follows:
*First: We find the area of one of the bases [For each cylinder]:
**Bigger cylinder:
![A_(bC)=\pi(4)^2\Rightarrow A_(bC)=16\pi](https://img.qammunity.org/2023/formulas/mathematics/college/a3qovr6576c6lc5ovskhltsnbt3aujil50.png)
**Smaller cylinder:
![A_(bc)=\pi(1)^2\Rightarrow A_(bc)=\pi](https://img.qammunity.org/2023/formulas/mathematics/college/3ftip37z83xagorav7povb6a08k0nxy126.png)
*Second: We determine the area of the face of the cylinder. For this, we can see the following:
When we "unroll" the face of the cylinder we will obtain a rectangle, and thus we find its area, that will be given by the circumference of the base of the cylinder times the length of the cylinder.
**Circumference bigger cylinder:
![C_(bc)=2\pi(4)\Rightarrow C_(bc)=8\pi](https://img.qammunity.org/2023/formulas/mathematics/college/znnbud0yfpnmv198mfuqgvnylnt8wmia5s.png)
**Circumference smaller cylinder:
![C_(sc)=2\pi(1)\Rightarrow C_(sc)=2\pi](https://img.qammunity.org/2023/formulas/mathematics/college/elatcpv3cu01a7ypl53kgda224ed9649s9.png)
*Third: We find the area for each face of each cylinder:
**Area rectangle bigger cylinder:
![A_(rC)=8\pi\cdot6\Rightarrow A_(rC)=48\pi](https://img.qammunity.org/2023/formulas/mathematics/college/i9ihkzbpc9amexidpr5kiw80bhlvyya6g3.png)
**Area rectangle smaller cylinder:
![A_(rc)=2\pi\cdot1\Rightarrow A_(rc)=2\pi](https://img.qammunity.org/2023/formulas/mathematics/college/3uie9rzodsr0kyxbbyvzcgy5ufvprsw5pm.png)
*Fourt: We will determine the total surface area for the shape by adding the areas for the bigger cylinder and substract from it the surface area for the smaller cylinder, that is:
![T_s=(16\pi+48\pi)-(\pi+2\pi)\Rightarrow T_s=61\pi](https://img.qammunity.org/2023/formulas/mathematics/college/dbuia7ct3f5u0l3bl9flxezk5vo0hp7zf2.png)
So, the total surface area for the hollow cylinder is 61pi square inches.