The Solution.
For the initial deposit of $3,000 to double it, means the amount will become $6,000.
Semi-annually implies 2 periods in a year.
The given formula is
![nt=\frac{\log_{}((FV)/(P))}{\log_{}(1+(r)/(n))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l1t4eqy4l4vimorxoibyyl5wd2robff60q.png)
![\text{Where n=2, FV=\$6000, P=\$3000, r=0.0525, t=?}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jwzcy7qigx4l6nssbnu89zzpw97gosjgi7.png)
substituting these values, we get
![2t=\frac{\log _{}((6000)/(3000))}{\log _{}(1+(0.0525)/(2))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3bqy672qcf7ubowfx4zxb5va345mofawn8.png)
![2t=\frac{\log _{}2}{\log _{}(1+0.02625)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cm7h690k80h60fzxxfd7j3hkerct0sp9ey.png)
![2t=\frac{\log _{}2}{\log _{}(1.02625)}=(0.3010)/(0.01125)=26.7556](https://img.qammunity.org/2023/formulas/mathematics/high-school/zah4fnorx6fix26t2935hc70kslejc1aqy.png)
![\begin{gathered} \text{Dividing both sides by 2, we get} \\ t=(26.7556)/(2)=13.3778\approx13\text{ years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/391gz0mj7eqhaz45ucw46fug76f8qkba9y.png)
Therefore, the correct answer is 13 years (4th option)