We know that the sum of n terms of a series is:
![S=n^2+2n](https://img.qammunity.org/2023/formulas/mathematics/college/zoksgh98l2qie2afg0fjmikkniwpmax4hb.png)
We have to find the 3 first terms of the series.
The first term will be equal to the sum of all the terms when n = 1, as it is the only term present. Then:
![a_1=S(1)=1^2+2\cdot1=1+2=3](https://img.qammunity.org/2023/formulas/mathematics/college/5fe57yilrp0tekp0do13cy055uja9yfmuq.png)
We can calculate the second term (a2) as:
![\begin{gathered} a_1+a_2=S(2) \\ a_2=S(2)-a_1 \\ a_2=(2^2+2\cdot2)-3 \\ a_2=(4+4)-3 \\ a_2=8-3 \\ a_2=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nlugp3z77m1piaj9fu6ny5le1djf14uuud.png)
Finally, the third term will be:
![\begin{gathered} a_1+a_2+a_3=S(3) \\ a_3=S(3)-(a_1+a_2) \\ a_3=S(3)-S(2) \\ a_3=3^2+2\cdot3-2^2-2\cdot2 \\ a_3=9+6-4-4 \\ a_3=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gv43qpn431s6pckh5oz0wu02icacye6rmo.png)
NOTE: we can calculate any term (an) as:
![a_n=S(n)-S(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/tzhy69ig8qcomhvgyxwnk0sb63slb2dlfp.png)
Answer: the first 3 terms are a1 = 3, a2 = 5 and a3 = 7.