The distance between two points A(x1,y1) and B(x2,y2) is given by:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
In this problem we need to find the length of MB which is half AB, therefore the distance will be d/2 or:
![(d)/(2)=\frac{\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/3bmn9f1suzi8sd6shxu7xg7pdgsgxlw5rf.png)
Now, let's replace and solve
x1 = 4
y1 = -1
x2 = -2
y2 = 3
![\begin{gathered} MB=(d)/(2)=\frac{\sqrt[]{(-2-4)^2+\mleft(3+1\mright)^2}}{2} \\ =(1)/(2)\cdot\sqrt[]{(-6)^2+(4)^2} \\ =(1)/(2)\sqrt[]{36+16} \\ =(1)/(2)\sqrt[]{52} \\ =(1)/(2)\cdot2\sqrt[]{13} \\ =\sqrt[]{13} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2rkgsu65bsg1mcnxncnw0gkw77skdfn2gv.png)
Thus, the length of MB is SQRT(13) or approximately: 3.6