44.5k views
3 votes
Prove that the median to the hypotenuse of a right triangle is half the hypotenuse

Prove that the median to the hypotenuse of a right triangle is half the hypotenuse-example-1
User Dimskiy
by
8.3k points

1 Answer

3 votes

To compare lengths, use the distance formula (2nd option)

Step-by-step explanation:

We want to prove OP = 1/2 MN

We need to find the midpoint of MN which is point P

Using the midpoint formula:


$$\text{Midpoint = }(1)/(2)(x_1+x_2),\text{ }(1)/(2)(y_1+y_2)$$
\begin{gathered} M\text{ }(0,\text{ 2b})\text{ and N }(2a,\text{ 0}) \\ x_1=0,y_1=2b,x_2=2a,y_2\text{ = 0} \\ Midpoint\text{ P = }(1)/(2)(0\text{ + 2a}),\text{ }(1)/(2)(2b\text{ + 0}) \\ Midpoint\text{ P = }(1)/(2)(2a),\text{ }(1)/(2)(2b) \\ Midpoint\text{ P = a, b} \end{gathered}

Since P is the midpoint of MN, it means:

MP = NP

We need to ascertain OP = 1/2 MN

To do this, we will use the distance formula:


$$dis\tan ce\text{ = }\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}$$
\begin{gathered} distance\text{ OP: O}(0,0)\text{ and P}(a,\text{ b}) \\ O\text{ is from the origin. Coordinate = }(0,\text{ 0}) \\ x_1=0,y_1=0,x_2=a,y_2\text{ = b} \\ distance\text{ OP = }\sqrt{(b\text{ - 0})^2+(a-0)^2}\text{ } \\ distance\text{ OP = }√(b^2+a^2) \end{gathered}
\begin{gathered} distance\text{ MN: M}^(0,\text{ 2b})\text{ and N }(2a,\text{ 0}) \\ x_1=0,y_1=2b,x_2=2a,y_2\text{ = 0} \\ distance\text{ MN = }\sqrt{(0-2b)^2+(2a\text{ - 0})^2}^ \\ distance\text{ MN}=\text{ }√((-2b)^2+(2a)^2)\text{ = }√(4b^2+4a^2) \\ distance\text{ MN = }√(4(b^2+a^2))\text{ } \\ distance\text{ MN = 2 }\sqrt{b^2+\text{ a}^2} \end{gathered}
\begin{gathered} half\text{ of distance MN = }(1)/(2)(2\text{ }√(b^2+a^2)) \\ half\text{ of distance MN = }√(b^2+a^2) \end{gathered}

From our result above, OP = 1/2 MN

To compare lengths, use the distance formula (2nd option)

User Michael Kernahan
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories