Answer:
The average rate of change for the first five weeks of population growth is;
![3100\text{ bacteria per week}](https://img.qammunity.org/2023/formulas/mathematics/college/nrzuxj79oijmlq84uyr11rghf8cu0815jj.png)
Step-by-step explanation:
Given that the growth of a population can be modeled by the exponential function;
![P(t)=500.2^t](https://img.qammunity.org/2023/formulas/mathematics/college/jdi9lmvxlcb62d32s15hue6xohei9ed2tt.png)
The average rate of change for the first five weeks can be calculated using the formula;
![m=(P(b)-P(a))/(b-a)](https://img.qammunity.org/2023/formulas/mathematics/college/oo8pe6ig86afoi7hr0clbqs7zbtc6arel7.png)
For the first five weeks;
![\begin{gathered} a=0 \\ b=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/381d49g4jhmjxkifenhs6tbrgpb7smrjky.png)
substituting to get the value of the function at this points;
![\begin{gathered} P(t)=500\cdot2^t \\ P(0)=500\cdot2^0=500\cdot1 \\ P(0)=500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j62p4e20g0do9xl3ak04m6hrzjsb2c5pyg.png)
![\begin{gathered} P(t)=500\cdot2^t \\ P(5)=500\cdot2^5=500\cdot32 \\ P(5)=16000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2oyqr2aofi9csff2ifwwz8u15jjqec7nsp.png)
So, the average rate of change is;
![\begin{gathered} m=(16000-500)/(5-0) \\ m=(15500)/(5) \\ m=3100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qtejuodz2x2bpfa1zlqd49klsicpcht4yl.png)
Therefore, the average rate of change for the first five weeks of population growth is;
![3100\text{ bacteria per week}](https://img.qammunity.org/2023/formulas/mathematics/college/nrzuxj79oijmlq84uyr11rghf8cu0815jj.png)