Solution:
The volume of the cases in 2001 is given below as
![=17.8billion](https://img.qammunity.org/2023/formulas/mathematics/high-school/6nhykmcg25ww2bromb58wudx1vfpjhbsqf.png)
The percentage increase from 2000 is given below as
![=4\%](https://img.qammunity.org/2023/formulas/mathematics/high-school/qzot2kh6zxyipyheb6yjginrg9wqg4sg82.png)
The exponential function is given below as
![\begin{gathered} y=ab^t \\ where, \\ b=1+r \\ r=4\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8q9bv9al2zguc149xa74u5695ugctl5g30.png)
By substituting the values, we will have
![\begin{gathered} y=ab^(t) \\ 17.8=a(1+(4)/(100))^1 \\ 1.04a=17.8 \\ (1.04a)/(1.04)=(17.8)/(1.04) \\ a=17.12billion \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/urr39fe0qqvusxyhsurvarl910srn0n8ww.png)
Hence,
The final answer is YES, THE EXPONENTIAL MODEL FUNCTION IS APPROPRIATE
Therefore,
The exponential model after y years will be
![C(y)=17.12(1.04)^y\text{ }billion\text{ }cases](https://img.qammunity.org/2023/formulas/mathematics/high-school/avwjeluxpn3y9u8zaoeeot8yv6x24wj5b6.png)