From the statement of the problem we know that:
• the demand function is:
![p=200-10q,](https://img.qammunity.org/2023/formulas/mathematics/college/rw3npik056a3ulsj0e8410do7f7k4v8mmh.png)
where p is the price in dollars when q units are demanded,
• the revenue function for the product is:
![R(q)=q\cdot p=q(200-10q)=200q-10q^2.](https://img.qammunity.org/2023/formulas/mathematics/college/2qshyob9fmuq8nogvjpoh95bhy1hivxw5p.png)
We must find the level of production q that maximizes the total revenue R.
We maximize the function R(q), by equalling to zero its first derivative:
![(dR)/(dq)=200-10\cdot2q=0\Rightarrow20q=200\Rightarrow q=(200)/(20)=10.](https://img.qammunity.org/2023/formulas/mathematics/college/9r0rl73djxgbxwh909muid2azktju2pqbc.png)
The level of production that maximizes the total revenue is q = 10 units.
The maximum value of the revenue is:
![R(q=10)=10\cdot(200-10\cdot10)=1000.](https://img.qammunity.org/2023/formulas/mathematics/college/tvxpcmusv8osm18f4tjbwa230zxm2tbwfu.png)
Answer
• q = 10 units,
,
• R = $1000.