SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Redraw the given triangle
STEP 2: Write the needed measures
![\begin{gathered} A=90-38=52^(\circ)----Right\text{ angle} \\ B=90^(\circ)+14^(\circ)=104^(\circ) \\ C=180-104^(\circ)-52^(\circ)=24^(\circ) \\ c=159miles \\ b=required\text{ side} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ykgzco2uqfx1v10qucj9fg8kmvrnlzmdo.png)
STEP 3: State the Sine rule
![(\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/dwc66mjebk1jvhqbzm1audqtmju1mnx2km.png)
STEP 4: Substitute the known measures into the formula
![\begin{gathered} (\sin B)/(b)=(\sin C)/(c) \\ (\sin104)/(b)=(\sin24)/(159) \\ Cros\text{s multiply} \\ b\cdot\sin24=159\cdot\sin104 \\ b=(159\cdot\sin104)/(\sin24) \\ b=(154.2770205)/(0.406736643)=379.3044544 \\ b\approx379.3\text{ miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2vxkm6awd9mxzc4172dv3hw8690nys3s45.png)
Hence, the balloon is approximately 379.3 miles away from the western station.