Finding the inverse function:
We are given a function y = f(x). To find the inverse function, we exchange x with y in the original function, and then isolate y.
So
We are given the function:

So

Changing x with y

Now, we have to isolate y. So

We can apply the fifth root to both sides. So:
![\sqrt[5]{(y+7)^5}=\sqrt[5]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6sjsruksdvp89qpnjahw6iksvo8hhrwngi.png)
![y+7=\sqrt[5]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7hj34n9s39w71b00iycrpr66dqiqry4i2s.png)
![f^(-1)(x)=y=\sqrt[5]{x}-7](https://img.qammunity.org/2023/formulas/mathematics/high-school/i2p9w45p964pmtglfydv9qejpfl0rqlxdk.png)