The expression of the time taken to swing the pendulum is,
![T(L)=2\pi\sqrt[]{(L)/(32)}](https://img.qammunity.org/2023/formulas/physics/college/xvhr5ato4sa9bhy7o8fx27w1sxh2h9sl0i.png)
Part (a)
Substitute the known values in the expression of time.
![\begin{gathered} T(L)=2(3.14)\sqrt[]{(6)/(32)} \\ =(6.28)(0.433) \\ \approx2.72\text{ s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dhv6udy20psg5ohjl0qo4s6zuo3v11ao5b.png)
Thus, the time taken by pendulum to complete one swing is 2.72 s.
Part (b)
Convert the length of pendulum in feet as,
![\begin{gathered} 9\text{ in=}(9\text{ in)(}\frac{1\text{ ft}}{12\text{ in}})_{} \\ =0.75\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6gaqwgf8z2cng932tjlzabd8lr2u61rv5y.png)
Substitute the known values in the expression of time.
![\begin{gathered} T(L)=2(3.14)\sqrt[]{(0.75)/(32)} \\ =(6.28)(0.153) \\ \approx1.0\text{ s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/rlv5083gb7spyfy7js4kabhlsbnb3bdci1.png)
Thus, the time taken by pendulum to complete one swing is 1.0 s.