Given that segment PB is a tangent, you can identify that segment PC is secant.
You know that:
![\begin{gathered} AC=45 \\ PA=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2uaf0hxahgiqam1ufixkc4ykwnbmthloxk.png)
According to the Intersecting Secant-Tangent Theorem:
![Tangent=\sqrt{Secant\text{ }segment\cdot External\text{ }secant\text{ }segment}](https://img.qammunity.org/2023/formulas/mathematics/college/enp5m6yyfuuqme9yhza71po8cry7ovw0nc.png)
In this case, you can identify that:
![Secant\text{ }segment=PC=PA+AC=4+45=49](https://img.qammunity.org/2023/formulas/mathematics/college/ocpzozdnlui1qzc1mo7tq3qoofcsp11lpn.png)
![External\text{ }secant\text{ }segment=PA=4](https://img.qammunity.org/2023/formulas/mathematics/college/wznwyxfsv2k5e24li9qxs7wapmfemi9417.png)
Therefore, you can determine that:
![\begin{gathered} PB=√(49\cdot4) \\ PB=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o7lzscc4onkfiex67mhk5qgwfsu0wzmahj.png)
Hence, the answer is: Option b.