Given: A triangle ABC with altitude BD=6.5 units and side AB=7.5 units, BC=10 units.
Required: To determine the length of AC.
Explanation: The triangle ABD and triangle BCD are right-angled triangles. Hence we can apply Pythagoras theorem which states that
![(Hypotenuse)^2=(Perpendicular)^2+(Base)^2](https://img.qammunity.org/2023/formulas/mathematics/college/l1g6wv1gzkpx0je2oraath87fmyr504jak.png)
Hence for triangle ABD, we can write
![\begin{gathered} AB^2=BD^2+AD^2 \\ (7.5)^2=(6.5)^2+AD^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ai0bbu74wc968xaz2bwf8f0ydzt07x7w4y.png)
or,
![\begin{gathered} AD=√((7.5-6.5)(7.5+6.5)) \\ AD=√(14)\text{ units} \\ AD=3.74\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ylrrgujf8fedb8ptidg6gyjb56pu2xbug2.png)
Similarly, for triangle BCD, we have
![\begin{gathered} 10^2=6.5^2+CD^2 \\ CD=√((10+6.5)(10-6.5)) \\ CD=√(16.5*3.5) \\ CD=√(57.75) \\ CD=7.599\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6n248ksm8tv3g1tdvmahnt4kubqkct2t95.png)
Now,
![\begin{gathered} AC=AD+CD \\ =3.74+7.599 \\ =11.34\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sr3yy06070klx9baswdf0f1zerr12wdwc7.png)
Final Answer: The length of AC is 11.34 units.