233k views
4 votes
P is a point on the terminal side of 0 in standard position. Find the exact value of the six trigonometric functions for 0.please help

P is a point on the terminal side of 0 in standard position. Find the exact value-example-1

1 Answer

4 votes

Let's begin by listing out the given information:


P(4,-2)

We will solve using the formula:


\begin{gathered} r=\sqrt[]{x^2+y^2} \\ (x,y)=(4,-2) \\ r=\sqrt[]{4^2+(-2)^2}=\sqrt[]{16+4}=\sqrt[]{20} \\ r=\sqrt[]{20} \end{gathered}

We will proceed to calculate for the six trigonometric function:


\begin{gathered} sin\theta=\frac{-2}{\sqrt[]{20}}=-\frac{2\sqrt[]{20}}{20}=\frac{\sqrt[]{20}}{10}=\frac{2\sqrt[]{5}}{10}=\frac{\sqrt[]{5}}{5} \\ sin\theta=\frac{\sqrt[]{5}}{5} \\ \\ cos\theta=\frac{4}{\sqrt[]{20}}=\frac{4\sqrt[]{20}}{20}=\frac{\sqrt[]{20}}{5} \\ cos\theta=\frac{\sqrt[]{20}}{5} \\ \\ tan\theta=(-2)/(4)=-(2)/(4)=-(1)/(2) \\ tan\theta=-(1)/(2) \end{gathered}

For the remaining, we have:


\begin{gathered} cot\theta=(1)/(tan\theta)=(1)/((-1)/(2))=-(2)/(1) \\ cot\theta=-2 \\ \\ sec\theta=(1)/(cos\theta)=\frac{1}{\frac{\sqrt[]{20}}{5}}=\frac{5}{\sqrt[]{20}} \\ sec\theta=\frac{5}{\sqrt[]{20}} \\ \\ co\sec \theta=(1)/(sin\theta)=\frac{1}{\frac{\sqrt[]{5}}{5}}=\frac{5}{\sqrt[]{5}} \\ co\sec \theta=\frac{5}{\sqrt[]{5}} \end{gathered}

User Thalia
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories