62.7k views
5 votes
((-6 *v*( x to the third power) *(y to the 6 power)) 2 square

1 Answer

4 votes

(36)v^2x^6y^(12)

Step-by-step explanation


(-6vx^3y^6)^2

Step 1

remember some properties of the exponents


\begin{gathered} (a^b)^c=a^(b\cdot c) \\ \text{for example} \\ (2^3)^4=2^(3\cdot4)=2^(12) \end{gathered}

and


\begin{gathered} (ab)^m=a^mb^m \\ \text{for example} \\ (2\cdot3)^3=2^3\cdot3^3 \end{gathered}

Step 2

then


\begin{gathered} (-6vx^3y^6)^2=(-6)^2v^2(x^3)^2(y^6)^2 \\ (-6vx^3y^6)^2=(-6\cdot-6)v^2x^(3\cdot2)y^(6\cdot2) \\ (-6vx^3y^6)^2=(36)v^2x^6y^(12) \\ (36)v^2x^6y^(12) \end{gathered}
\begin{gathered} (-6vx^3y^6)^2 \\ we\text{ have a product} \\ (-6\cdot v\cdot x^3\cdot y^6)^2 \end{gathered}

and, we know


(ab)^m=a^mb^m

then


\begin{gathered} (-6\cdot v\cdot x^3\cdot y^6)^2=(-6)^2\cdot(v)^{2^{}}\cdot(x^3)^2\cdot(y^6)^2 \\ =(-6)^2\cdot(v)^{2^{}}\cdot(x^3)^2\cdot(y^6)^2 \end{gathered}

and, finally


\begin{gathered} =(-6)^2\cdot(v)^{2^{}}\cdot(x^3)^2\cdot(y^6)^2=(-6\cdot-6)v^2x^6y^(12) \\ =(36)v^2x^6y^(12) \end{gathered}

I hope this helps you

User Vusak
by
4.1k points