If two angles are complementary, their sum equals 90º
So if A and B are complementary we can say that:
![A+B=90º](https://img.qammunity.org/2023/formulas/mathematics/college/enfbav823uxo4pijuog558h1jci9kimbqf.png)
For
A=9x-3
B=10x-2
This equation is equal to
![(9x-3)+(10x-2)=90](https://img.qammunity.org/2023/formulas/mathematics/college/ge7wt7uulpp2gi38qt0kfsxy5t8i7tiadn.png)
From this on you can solve for x:
![\begin{gathered} 9x-3+10x-2=90 \\ 9x+10x-3-2=90 \\ 19x-5=90 \\ 19x=90+5 \\ 19x=95 \\ (19x)/(19)=(95)/(19) \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pllg0tkictpr5y0c1xpi1vtxrfy63dkzsr.png)
Now that the value of x is known, replace it in the expressions for A and B to determine the measure of the angles:
![\begin{gathered} A=9x-3 \\ A=9\cdot5-3 \\ A=45-3 \\ A=42º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uqem4rg13mcgpzeko2dvsvglaafxcs8bg4.png)
![\begin{gathered} B=10x-2 \\ B=10\cdot5-2 \\ B=50-2 \\ B=48º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xtizyxvehh0l9pw7pazc1h1326byeb9p4x.png)
∠A=42º and ∠B=48º