First, find the z-score.
![Z=\frac{x-\mu}{\frac{\sigma}{\sqrt[]{n}}}](https://img.qammunity.org/2023/formulas/mathematics/college/hxw4zfi6uvrpx1yrz9be89rnherkl1e02q.png)
Using the given information, we have
![Z=\frac{2.7-2.35}{\frac{1.27}{\sqrt[]{43}}}\approx1.32](https://img.qammunity.org/2023/formulas/mathematics/college/ke701vr5am5og55rq5hmb78xjpt1vftmo6.png)
Then, use a z-table to find the p-value of 0.9147.
At last, subtract this p-value from 1 to find the probability that the sample is greater than 2.7%.
![1-0.9147=0.0853](https://img.qammunity.org/2023/formulas/mathematics/college/g91jywmkyjnyko9c84vmbe34vrjvjrc8mz.png)
Therefore, the probability is 0.0853.