![\begin{gathered} a_1=82 \\ d=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y10ejbilf9l6mulx1tqjwc6uvii61i5w8k.png)
Step-by-step explanation
In an Arithmetic Sequence the difference between one term and the next is a constant. In other words, we just add the same value each time , it is given by the expression
![\begin{gathered} a_n=a_(1+)(n-1)d \\ \text{where} \\ a_1i\text{s the first term } \\ and\text{ } \\ d\text{ is the common differnece, so} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xo54jog67uoyek5bxd7chfba35o7ulbrl3.png)
Step 1
Set the equations:
a)
Let
![\begin{gathered} a_6=a_1+(6-1)d \\ \text{replace} \\ 32=a_1+5d\rightarrow equation(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d80nu0znfodfziszahq5c4d10xm7iph605.png)
b)
![\begin{gathered} a_{_(10)}=a_1+(10-1)d \\ \text{replace} \\ -8=a_1+9d\rightarrow equation(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mps1dg7r7ib82b7ppfft2wmvqngcau6vu8.png)
Step 2
Now, solve the equations
![\begin{gathered} 32=a_1+5d\rightarrow equation(1) \\ -8=a_1+9d\rightarrow equation(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kbkv26aac3un5ofx8sgim80hgj60o6bdmf.png)
a) isolate a1 in equation (1) and then replace in equation (2)
![\begin{gathered} 32=a_1+5d\rightarrow equation(1) \\ \text{subtract 5d in both sides} \\ 32-5d=a_1+5d-5d \\ 32-5d=a_1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qcyuspyluknn66aq5esdvoe3qwtclldz62.png)
replace i equation (2)
![\begin{gathered} -8=a_1+9d\rightarrow equation(2) \\ -8=32-5d+9d \\ \text{add like terms} \\ -8=32+4d \\ \text{subtract 32 in both sides} \\ -8-32=32+4d-32 \\ -40=4d \\ \text{divide both sides by 4} \\ (-40)/(4)=(4d)/(4) \\ -10=d \\ d=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m4icia5vokcpgqewkt1rqi2eydh6c3svq7.png)
b) now , fo find a1, replace d in equation(1)
![\begin{gathered} 32=a_1+5d\rightarrow equation(1) \\ 32=a_1+5(-10) \\ 32=a_1-50 \\ \text{add 50 in both sides} \\ 32+50=a_1-50+50 \\ 82=a_1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/161f0lgyl5j0m298uqhgmppxze64tlnmip.png)
therefore, the answer is
![\begin{gathered} a_1=82 \\ d=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y10ejbilf9l6mulx1tqjwc6uvii61i5w8k.png)
I hope this helps you