Solution:
Given:
Using the exponential function formula,
![y=ab^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/hye5rg1h8wj3ohgdt4j1vpepdhoym0w9ex.png)
From the table, pick two points; (5,1200) and (10,1800)
![\begin{gathered} 1200=ab^5...............(1) \\ 1800=ab^(10).....................(2) \\ Equation\text{ \lparen2\rparen}/\text{ equation \lparen1\rparen;} \\ (1800)/(1200)=(ab^(10))/(ab^5) \\ 1.5=b^5 \\ b=1.5^{(1)/(5)} \\ SInce\text{ the initial is \$800,} \\ a=800 \\ \\ \\ Hence,\text{ the function is:} \\ y=ab^x \\ y=800(1.5)^{(1)/(5)* x} \\ \\ y=800(1.5)^{(x)/(5)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uikywvy77v1rc4v451a6smgq9lw4nlck4b.png)
Therefore, the exponential function is:
![y=800(1.5)^{(x)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/college/2b5zwziwaijcpwl9ewotgyksnjk049jsdw.png)
To complete the table,
when x = 20 years;
![\begin{gathered} y=800(1.5)^{(x)/(5)} \\ y=800(1.5)^{(20)/(5)} \\ y=800(1.5^4) \\ y=\text{ \$}4050 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i67kqmsdkxsd3a8343j42wibwgw8s8zlgo.png)
when x = 25 years;
![\begin{gathered} y=800(1.5)^{(x)/(5)} \\ y=800(1.5)^{(25)/(5)} \\ y=800(1.5^5) \\ y=\text{ \$}6075 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4pn0d8nh17v5ddi5govhbvq2xndn9h2dk2.png)
when x = 30 years;
![\begin{gathered} y=800(1.5)^{(x)/(5)} \\ y=800(1.5)^{(30)/(5)} \\ y=800(1.5^6) \\ y=\text{ \$}9112.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gbbk9lbfbgfn5anzrg7bdve4u2bp3iw8vh.png)
when x = 35 years;
![\begin{gathered} y=800(1.5)^{(x)/(5)} \\ y=800(1.5)^{(35)/(5)} \\ y=800(1.5^7) \\ y=\text{ \$}13668.75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5jywokksnxtd4cvvlcculflx7l1x9kysr1.png)