Given that the function is
![y=5x-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/1xxb1mp858rwv44yf8yb298btbzfzfo1ez.png)
with the domain given below as
![(0.5,11)](https://img.qammunity.org/2023/formulas/mathematics/college/chplnaz9f1f6szwhd3gvmf0b4btuzagjnw.png)
The range is the set of values generated by the evaluation of the function for the set of domain values.
![Domain\colon x\in\text{ }\lbrace0.5,11\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/i9h8xz1g302m8juzm7osnjyrx0omb2md8v.png)
The range of the function will be
![\begin{gathered} f(x)=5x-2 \\ f(0.5)=5(0.5)-2 \\ f(0.5)=2.5-2 \\ f(0.5)=0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yv94nsvr43sdcgp33xtg0ngsxbijqil2cr.png)
![\begin{gathered} f(x)=5x-2 \\ f(11)=5(11)-2 \\ f(11)=55-2 \\ f(11)=53 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/417kfeqph6iyoiizgtq5yit51c817nd07d.png)
Hence,
The range of the function y=5x-2 is
![=\lbrace0.5,53\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/sypzubxrq14zdzooiy6gjbqh6s80gll4zt.png)
Therefore,
The final answer is OPTION D