80.7k views
0 votes
Let f(x) = √x, and let's call it the "base" function.Now, consider the function g(x) = √(x + 3) - 2. Imagine the graph that comes fromtransforming f(x) to g(x). Describe the transformations that have taken place.

Let f(x) = √x, and let's call it the "base" function.Now, consider the function-example-1
User Andyvanee
by
8.8k points

1 Answer

4 votes

There are two transformation that hapenned from f(x) to g(x): vertical and horizontal translation.

The horizontal translation affects the value of x, that is, you switch the variable x in the function by "x + k", where k is the value you are moving the function to the left or to the right.

In this case, we can see that the x inside the square root turns into a "x + 3", so we had a horizontal translation of 3 units to the left.

Then, a vertical translation is a transformation that affects the value of y, that is, the value of the function.

Comparing f(x) and g(x), we see that the value of f(x) was added by -2 (after the first transformation), so we had a vertical translation of 2 units down.

So the transformations are: translation 3 units to the left and translation 2 units down.

User Grooveplex
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories