We have to evaluate the integral:
![\int4^(3x)dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/dc2w7v00t91ccx9uh2330z437c1oc6rae5.png)
We start with a substitution:
![\begin{gathered} u=3x \\ (du)/(dx)=3\Rightarrow dx=(du)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/clddc8v4kvhknbkd67fh6mxzajf62aimgi.png)
Then, we can now apply the substitution and then the rule for exponential functions:
![\int4^(3x)dx=\int4^u(du)/(3)=(1)/(3)\int4^udu](https://img.qammunity.org/2023/formulas/mathematics/high-school/1nvivcx6hwb0rby6agdclrp37dk5dvbie9.png)
![(1)/(3)\int4^udu=(1)/(3)\cdot(4^u)/(\ln(4))+C](https://img.qammunity.org/2023/formulas/mathematics/high-school/3sumbh41hbs4crffbm2c0bhqpwcq0ry7fp.png)
We can replace back with x and write:
![(4^u)/(3\ln(4))=(4^(3x))/(3\ln(4))](https://img.qammunity.org/2023/formulas/mathematics/high-school/wzv4w62i3ro2sluw8or129i8az4om0jybx.png)
Then, the solution to the integral is:
![\int4^(3x)dx=(4^(3x))/(3\ln(4))+C](https://img.qammunity.org/2023/formulas/mathematics/high-school/ptamogfcq0qryj373pg4p6nc3vmwb7c9vc.png)
This result does not match any of the options.
Answer: none of these.