To find the equation of the line shown, we need two points:
![\begin{gathered} (x_1,y_1)=(0,100) \\ \text{and} \\ (x_2,y_2)=(20,200) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lztaarbgihjsr6cl6ln1yq7taeficw6a7k.png)
The equation of the line goes by:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
The find m, the slope, we use the formula below and find m.
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1)_{} \\ m=(200-100)/(20-0) \\ m=(100)/(20) \\ m=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ldb4xq6r7rveshvaprmyg0icnlp9gg8ntr.png)
Now, let's put the point and m to find the equation:
![\begin{gathered} y-y_1=m(x-x_1) \\ y-100=5(x-0) \\ y-100=5(x) \\ y-100=5x \\ y=5x+100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sr2b581619docm4mnmpupctwb1mutmwlo9.png)
Changing to functional notation, this will be:
![f(x)=5x+100](https://img.qammunity.org/2023/formulas/mathematics/college/bxxe7qpc2g0vpijzg6uywe2c8izl1ii8fm.png)
2nd answer choice is correct.