149k views
5 votes
Which value is a solution of the equation x² = _41?Select all that apply.0A. x = -20B. x = 10C. x = 00D. x = 1Ex=2

Which value is a solution of the equation x² = _41?Select all that apply.0A. x = -20B-example-1
User Rbaldwin
by
5.3k points

1 Answer

1 vote

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given equation


x^2=(2x)/(x+1)

STEP 2: Simplify the equation for x


\begin{gathered} \mathrm{Multiply\:both\:sides\:by\:}x+1 \\ x^2\left(x+1\right)=(2x)/(x+1)\left(x+1\right) \\ \mathrm{Simplify} \\ x^2\left(x+1\right)=2x \end{gathered}

STEP 3: Solve the resulting polynomial equation


\begin{gathered} \mathrm{Subtract\:}2x\mathrm{\:from\:both\:sides} \\ x^2\left(x+1\right)-2x=2x-2x \\ x^2\left(x+1\right)-2x=0 \\ Factorise \\ x\left(x-1\right)\left(x+2\right)=0 \\ \mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0 \\ x=0\quad \mathrm{or}\quad \:x-1=0\quad \mathrm{or}\quad \:x+2=0 \\ \mathrm{The\:solutions\:are}: \\ x=0,\:x=1,\:x=-2 \end{gathered}

Therefore,


x=0,x=1,x=-2

Hence, the answers will be as seen below:

Which value is a solution of the equation x² = _41?Select all that apply.0A. x = -20B-example-1
User Closery
by
4.5k points