We use a chi-squared distribution which gives us a confidence interval that is not symmetric about the sample standard deviation.
We assume that the population of pipes is normally distributed, then
![\sqrt[]{\frac{(n-1)s^2}{\chi^{2_{}}_{\text{right}}^{}}}\le\sigma\le\sqrt[]{\frac{(n-1)s^2}{\chi^{2_{}}_{\text{left}}}}](https://img.qammunity.org/2023/formulas/mathematics/college/9olsl11y9lzmglrvopgm5kqim3iqizim06.png)
where s is the sample standard deviation, and sigma is the population standard deviation and n represents the sample size.
We need to find the L & R values that make
![P(L\le\chi^2\le R)=0.95](https://img.qammunity.org/2023/formulas/mathematics/college/f49zevw2zl9ikgyxf2dxd9jkvqut9b2tzs.png)
true.
Using a table or calculator, we have
![\begin{gathered} \chi^2_{\text{Right}}=20.483 \\ \chi^2_{\text{Left}}=3.247 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9qnif7svn3hzej4k74qq9rzbwthlolrx27.png)
The other variables are given. Plugging all of those values in the formula, we have
![\begin{gathered} \sqrt[]{((11-1)(14.6)^2)/(20.483)}\le\sigma\le\sqrt[]{((11-1)(14.6)^2)/(3.247)} \\ 10.2\le\sigma\le25.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8lef6i83f5h9s9lkhngj4cm62rife1r2f1.png)
The 95% confidence interval for the standard deviation is approximately (10.2, 25.6).