Given:
The potential across the battery is
![V=1.5\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/je7nxu5yo4znnozm0o2b2sj0re2orrnnds.png)
The resistance of each bulb in series is
![R=150\text{ }\Omega](https://img.qammunity.org/2023/formulas/physics/college/vaqqh2svjpurp12xe6p9g3og0dbxt2qgta.png)
To find:
The voltage between points B and C
Explanation:
The equivalent resistance of the bulbs is,
![\begin{gathered} R_(eq)=R+R \\ =150+150 \\ =300\text{ }\Omega \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/y5wds2q999e2bfb8qhshs4pye74b1gmnc3.png)
The current in the circuit is,
![\begin{gathered} I=(V)/(R_(eq)) \\ =(1.5)/(300) \\ =5*10^(-3)\text{ A} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3mkjnl908f7b9p071q073ppy4ffn36z9ox.png)
The voltage drop across B and C is the same as the voltage drop across the first bulb, which is,
![\begin{gathered} V_(BC)=I* R \\ =5*10^(-3)*150 \\ =0.75\text{ V} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/5m2gb4pwfoqhyigflvl2ytuays30ktawwx.png)
Hence, the required voltage drop is 0.75 V.