We are asked to convert the repeating decimal to fraction
![\text{Take d = 4.}\bar{\text{72}}\text{ = 4.72727272}\ldots](https://img.qammunity.org/2023/formulas/mathematics/high-school/re69sxt4kggneu6ox6d9q8d5w3w89kmdyu.png)
![\text{ d = 4.72727272}\ldots\text{ (first equation)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/re9dxdrso29vynl0yu4s4oqejyxaujlma5.png)
Step 1: Multiply both sides by 100 because there are two repeating digits
![\text{ 100d = 472.727272}\ldots(\text{second equation)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zugimihuc0wv2eslzs8ghhf5d73rcdpwbt.png)
Step 2: Subtract the first equation from the second one
![\begin{gathered} \text{ 100d -d = 472.727272 - 4,72727272} \\ \text{ 99d = 467. 99999}\ldots\text{ }\approx\text{ 4}68 \\ \text{ 99d = 4}68 \\ \text{ d =}(468)/(99)=(52)/(11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rk1evau6h4pg8ewuotk4l8r85u3q6kck1n.png)
Therefore, the fractional form of the repeating decimal 4.7277272... is 52/11