The equation is given as
![y=-4.9x^2+x+100](https://img.qammunity.org/2023/formulas/mathematics/college/552jg3eri42ftuqn2vyqcnigmtu06u6fpr.png)
where y is the height and x is the time.
Note that at the point when the ball hits the ground, the height is 0.
Therefore, we equate y to 0, such that
![\begin{gathered} y=0 \\ \therefore \\ -4.9x^2+x+100=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s8nzfyigsloc4ri35yal7pu8jiu1sly1yh.png)
Solving the quadratic equation using the quadratic formula,
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
where
a = -4.9
b = 1
c = 100
Substituting into the equation, we have
![\begin{gathered} x=\frac{-1\pm\sqrt[]{1^2-(4*\lbrack-4.9\rbrack*100)}}{2*1} \\ x=\frac{-1\pm\sqrt[]{1+1960}}{2} \\ x=\frac{-1\pm\sqrt[]{1961}}{2} \\ x=(-1\pm44.28)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zqp2l7jxz583ka2siuiab178fub682plou.png)
Therefore, the value can be
![\begin{gathered} x=(-1+44.28)/(2) \\ x=21.64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/41bfiui0o193ultr38agfbhx46gu19q7ij.png)
or
![\begin{gathered} x=(-1-44.28)/(2) \\ x=-22.64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xnhxn0lev9nxoshg6ugz89vwd7r6a8gept.png)
Since the time can only be positive, the time it takes for the ball to hit the ground is 21.64 seconds.