The line is perpendicular to the equation:
![y=3x+5](https://img.qammunity.org/2023/formulas/mathematics/college/5y6sk3l6g3ntq2crp9tmaj8cgq28nb26h0.png)
So our slope will be the negative reciprocal of the slope of this line so the new slope will be:
![m=-(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vy64mdjniypv9sfu22874ekdqjkryr3ckz.png)
Now with the slope we can find the intercept in the y axis with the slope equation:
![m=(y-y_1)/(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/jdj1lyi50jbpedvyjqiulvkzma36qgk0om.png)
So we replace the slope and the coordinate, and replace x=0 to find the intercept so:
![\begin{gathered} -(1)/(3)=(y-4)/(0-(-1)) \\ y-4=-(1)/(3) \\ y=4-(1)/(3) \\ y=(11)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ktv2a10t9avg4a6u4ux7yutzypaaioacmb.png)
So the general equation will be:
![y=-(1)/(3)x+(11)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/6s7bgwi98ivx9k9wy9silj9zigjpo7g19y.png)