Step 1. We need to find the maximum area of a rectangle inscribed in a circle.
The diameter of the circle is:
![\begin{gathered} Diameter: \\ d=8cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g5fy6xwa50jldl92rnrz18nlptwiz7fbev.png)
Step 2. The radius of the circle is:
![\begin{gathered} Radius: \\ r=d/2 \\ r=8cm/2 \\ r=4cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7qe1y82ouk9oz3639q2xuwgnskpbxljkf7.png)
Step 3. The formula to find the maximum area of a rectangle inscribed in a circle with radius r is:
![\begin{gathered} Area: \\ A=2r^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/76wyu4atp6c3dwho7v5vz0vws7684z2yma.png)
Step 4. Substituting the known value of r and finding the area:
![\begin{gathered} A=2(4cm)^2 \\ \downarrow\downarrow \\ A=2(16cm^2) \\ \downarrow \\ A=32cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vz4b5b5n6w0ctg2vu99ni7y5w23ab6akzs.png)
The maximum area is 32cm^2.
Step 5. The maximum area of a rectangle or quadrilateral inside a circle happens when the sides of the quadrilateral are equal. This means the quadrilateral is a square.
For a square the area formula is:
![A=l^2](https://img.qammunity.org/2023/formulas/mathematics/college/u8m4ktzz90c2ymvqwncx2eqjofo7ic02t9.png)
Where l is the length.
Step 6. Substituting the area to find the length of the sides:
![\begin{gathered} 32cm^2=l^2 \\ l=√(32cm^2) \\ l=4√(2)cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o916um15lsh88g6imdxqs82g1n77809mps.png)
Thus, the dimensions are:
![4√(2)cm*4√(2)cm](https://img.qammunity.org/2023/formulas/mathematics/college/wzw62420f7n7sqnrtj60my9pytocxqmwno.png)
Answer: The figure for which the area is maximum is the square, and the dimensions are:
![4√(2c)m*4\sqrt[]{2}cm](https://img.qammunity.org/2023/formulas/mathematics/college/sx41oeue8z70a1xjf4sjppz9x3trko0dvp.png)