the second option is more profitable
if she sells more than $ 18000 per month
Step-by-step explanation
Step 1
let's check the options we have
a)
one paying $3,000 per month
it means, in a month , she will receive 3.000
![\text{Option}_1=3000](https://img.qammunity.org/2023/formulas/mathematics/high-school/ec96bl18abnbjhgapxyt2c3ndernn1ru9i.png)
b)$2,100 per month plus a 5% commission on all sales made during the month
if x represents the sales, then the formula would be
![\begin{gathered} \text{Option}_2=2100+5\text{ \%(sales)} \\ \text{replacing} \\ \text{Option}_2=2100+0.05x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ihghjms6ptkxt5pam1z609kctzj62ajmzv.png)
Step 2
now, to make the option 2 more profitable
![\begin{gathered} \text{option}_1\leq option_2 \\ 3000\leq2100+0.05x \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x9yx4cefq9tr1sz0j5ml2sxv624n4nvfuc.png)
solve for x
![\begin{gathered} 3000\leq2100+0.05x \\ subtract\text{ 2100 in both sides} \\ 3000-2100\leq2100+0.05x-2100 \\ 900\leq0.05x \\ \text{divide both sides by 0.05} \\ (900)/(0.05)\leq(0.05)/(0.05)x \\ 18000\leq x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yo69nkmdrpfegqo8ykfuxiqt3k07ctkl1k.png)
therefore, the second option is more profitable
if she sells more than $ 18000 per month
I hope this helps you