Given:
Object A has the charge,
![\begin{gathered} +14.83\text{ nC} \\ =+14.83*10^(-9)\text{ C} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nbnw2u1krwfcys8kqgcrpmc49lpszy00sq.png)
This charge is at the origin.
Object B has the charge,
![\begin{gathered} -25.38\text{ nC} \\ =-25.38*10^(-9)\text{ C} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/n0oavawe0idmokkrl1t7jfw5nhxaoabk4v.png)
Object B is at the point,
![\begin{gathered} (x,\text{ y\rparen=\lparen0, 2.55 cm\rparen} \\ =(0,\text{ 0.0255 m\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w81nvhqjxzwcygwatn4i0xgtc447933qna.png)
To find:
The magnitude of the electric force, in micro-Newtons, on object A
Step-by-step explanation:
The electric force between two charges is given by,
![\begin{gathered} F=k(q_1q_2)/(r^2) \\ K=9*10^9\text{ N.m}^2.C^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nagpk02euby0u0156i1r63vx7o710s6gee.png)
The distance between A and B is,
![\begin{gathered} r=√(0^2+(0.0255)^2) \\ =0.0255\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qni21zc3cgrk8u803ir333gokpyq9x5vzy.png)
The force will be directed towards the negative charge and the magnitude is,
![\begin{gathered} F=9*10^9(14.83*10^(-9)*25.38*10^(-9))/((0.0255)^2) \\ =5209.5*10^(-6)\text{ N} \\ =5209.5\text{ }\mu N \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gj8q5cnudnmg35h2gvhm98gw2b4739l8dt.png)
Hence, the electric force on A is,
![5209.5\text{ }\mu N](https://img.qammunity.org/2023/formulas/physics/college/vdmzzq6v1tv0l7g2nhphnyw2fxrm919dad.png)