The volume formula of a cylinder is :
![V=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/axumboiozoejyargdo4sskcbefipwsp4rb.png)
The volume formula of a cone is :
![V=(1)/(3)\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/cb7imlxhz45xpg280bynm05moay5z8zpto.png)
From the problem, the heights are constant or the same.
So we can let h = 1 and compare the volumes.
a. Cylinder with r = 6 and h = 1
![V=\pi(6)^2(1)=36\pi](https://img.qammunity.org/2023/formulas/mathematics/college/60stsif4n43o63e3h5jh5tnau8za0pn5t0.png)
b. Cone with r = 6 and h = 1
![V=(1)/(3)\pi(6)^2(1)=12\pi](https://img.qammunity.org/2023/formulas/mathematics/college/16pli7tzl65thu5ytxoifvzldqcfr1rewc.png)
c. Cone with r = 3 and h = 1
![V=(1)/(3)\pi(3)^2(1)=3\pi](https://img.qammunity.org/2023/formulas/mathematics/college/objrkvvzrv5764xfhbul5mz77c9phbhkkv.png)
d. Cylinder with r = 3 and h = 1
![V=\pi(3)^2(1)=9\pi](https://img.qammunity.org/2023/formulas/mathematics/college/dbd911z7slck7dyqd1qxxb1gvkh2wrvliw.png)
Comparing the volumes from least to greatest :
![3\pi<9\pi<12\pi<36\pi](https://img.qammunity.org/2023/formulas/mathematics/college/6cja1a4rhxysdf57tzp4icpxe10m3y92ki.png)
or c, d, b then a.
ANSWER :
C, D, B then A