ANSWER:
0.195
Explanation:
Given:
p = 58% = 0.58
Sample size (n) = 50
We can calculate the mean and standard deviation as follows:
![\begin{gathered} \mu=np=50\cdot0.58 \\ \\ \mu=29 \\ \\ \sigma=√(n\cdot p\cdot(1-p))=√(50\cdot0.58\cdot(1-0.58)) \\ \\ \sigma=3.49 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/le9jqu8verbi6otxz2k7k8bbhxhjcdmfsl.png)
Now we must calculate the probability of at least 32, therefore:
![\begin{gathered} P(x\ge32)=1-P(x\leq32) \\ \\ P(x\leq32)=P\left((x-\mu)/(\sigma)\le(32-29)/(3.49)\right) \\ \\ (x\leq32)=P\left(z\le0.86\right) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/addrt8hzas0rcg3f5ly1ds1i7mub7i6g1j.png)
We use the normal table to determine the probability, like this:
![\begin{gathered} P(x\ge32)=1-0.8051 \\ \\ P(x\ge32)=0.1949\approx0.195 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qsrbxizq4a8oozm4w6ha09h87dwxfcnr2w.png)
Therefore, the correct answer is 0.195