47.5k views
5 votes
Suppose csc(theta) = 7/6 and cos(theta) < 0. Use a trig identity to find the value of tan(theta).

User Emmet
by
3.5k points

1 Answer

5 votes

Given:


\begin{gathered} csc\theta=(7)/(6) \\ \\ \cos \theta<0 \end{gathered}

Let's use a trig identity to find the value of tanθ.

Apply the definition of cosecant to find known sides of the unit circle.

We have:


\csc \theta=(hypotenuse)/(opposite)=(7)/(6)

Here, the hypotenuse and opposite sides are known.

Also, find the adjacent side using Pythagorean Theorem:


\begin{gathered} \text{adjacent}=\sqrt[]{hypotenuse^2-opposite^2} \\ \\ \text{adjacent}=\sqrt[]{7^2-6^2} \\ \\ \text{adjacent}=\sqrt[]{49-36}=\sqrt[]{13} \end{gathered}

Apply the definition of tangent to find tanθ:


\begin{gathered} \tan \theta=\frac{opposite}{\text{adjacent}} \\ \\ \text{tan}\theta=\frac{6}{\sqrt[]{13}} \end{gathered}

Simplify:


\begin{gathered} \tan \theta=\frac{6}{\sqrt[]{13}}*\frac{\sqrt[]{13}}{\sqrt[]{13}} \\ \\ \tan \theta=\frac{6\sqrt[]{13}}{13}=1.664 \end{gathered}

ANSWER:


\tan \theta=1.664

User Mkoryak
by
3.2k points