Given the following function:
![\text{ y = 4x}^2\text{ + 8x - 31}](https://img.qammunity.org/2023/formulas/mathematics/college/1wc94gbdkazpmie624src3cncdvwhpjesr.png)
(a) Give the coordinates of the vertex of the graph of the function.
First, let's identify the value of a, b and c.
![\text{ y = ax}^2\text{ + bx + c}](https://img.qammunity.org/2023/formulas/mathematics/college/og4idotdnmlzy0prs4rad9v46t8dkv1ffy.png)
We get,
a = 4
b = 8
c = -31
Let's first the x-coordinate of the vertex.
![\text{ x = }\frac{\text{ -b}}{\text{ 2a}}](https://img.qammunity.org/2023/formulas/mathematics/college/o89v8mff9wz9ouerttdhl0ktq9rv7qkt16.png)
![\text{ = }\frac{\text{ -(8)}}{\text{ 2(4)}}\text{ = }\frac{\text{ -8}}{\text{ 8}}](https://img.qammunity.org/2023/formulas/mathematics/college/rfwgz95lodaa9zlgpn4lvl8y8atoujakfy.png)
![\text{ x = -1}](https://img.qammunity.org/2023/formulas/mathematics/college/hulghmdprzyprcalfosqrlye1vjof3xhz9.png)
Next, let's find the y-coordinate of the vertex. Substitute x = -1 to the given function.
![\text{ y = 4x}^2\text{ + 8x - 31}](https://img.qammunity.org/2023/formulas/mathematics/college/1wc94gbdkazpmie624src3cncdvwhpjesr.png)
![\text{ = 4(-1)}^2\text{ + 8(-1) - 31 = 4(1) - 8 - 31}](https://img.qammunity.org/2023/formulas/mathematics/college/hyzsakpwx8x7zgnk1mc0lubfwf7ixo4lx7.png)
![\text{ = -4 - 31}](https://img.qammunity.org/2023/formulas/mathematics/college/2660njdfrg56g0la5dojzpbf5wjdq2ihix.png)
![\text{ y = -35}](https://img.qammunity.org/2023/formulas/mathematics/college/iv8y80drqnld2fgxjg8qpoe2gftp4jkkmw.png)
Therefore, the vertex of the graph of the function is at the point -1, -35
Answer: -1, -35
Plotting this into a graph, we get: