212k views
2 votes
If a wheel starts at an angular velocity of 7.5 rad/s and it comes to rest in 22 seconds, what is the wheel’s angular acceleration? What is the angular displacement of the wheel?

1 Answer

6 votes

Given:

The initial angular speed is,


\omega_0=7.5\text{ rad/s}

The final angular speed is,


\omega=0

The time taken to stop is,


t=22\text{ s}

To find:

the wheel’s angular acceleration and the angular displacement of the wheel

Step-by-step explanation:

From kinematics laws for rotational motion, we get,


\begin{gathered} \omega=\omega_0+\alpha t \\ \end{gathered}

here, the angular acceleration is,


\begin{gathered} \alpha=(\omega-\omega_0)/(t) \\ =(0-7.5)/(22) \\ =-0.34\text{ rad/s}^2 \end{gathered}

Now,


\begin{gathered} \omega^2-\omega_0^2=2\alpha\theta \\ \theta=(\omega^2-\omega_0^2)/(2\alpha) \end{gathered}

The angular displacement is,


\begin{gathered} \theta=(0^2-7.5^2)/(2*(-0.34)) \\ \theta=82.7\text{ rad} \end{gathered}

Hence, the angular acceleration is


-3.4\text{ rad/s}^2

The angular displacement is 82.7 rad.

User Patrick R
by
3.5k points