Answer:
The solution to the system of equations is the point at which the two lines meet:
![\begin{gathered} (3,4) \\ x=3 \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d25z7dtw7bydo7nrrvxubzimb4lioyxdd6.png)
Step-by-step explanation:
Given the system of equation;
![\begin{gathered} y=(1)/(3)x+3\text{ ---1} \\ 3x-y=5\text{ ---2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f2wsddotz63tb2oawri44xy4hfqmq9a1mp.png)
rewrite equation 2 in slope intercept form;
![\begin{gathered} 3x-y=5 \\ y=3x-5\text{ ----2a} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aj49w7vpjhmt25ti1y2zoy2zqsmk4j27ai.png)
Let us derive two cordinate points for each equation;
![\begin{gathered} y=(1)/(3)x+3\text{ ---1} \\ at\text{ x=0;} \\ y=(1)/(3)(0)+3 \\ y=3 \\ (0,3) \\ at\text{ x=3;} \\ y=(1)/(3)(3)+3 \\ y=1+3 \\ y=4 \\ (3,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nwwuqdu38lb95jqecbwu9h52fqc6ml9yyg.png)
![\begin{gathered} y=3x-5\text{ ----2a} \\ at\text{ x=0;} \\ y=3(0)-5 \\ y=-5 \\ (0,-5) \\ \text{at x=3;} \\ y=3(3)-5 \\ y=9-5 \\ y=4 \\ (3,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vcxxlcj3r3r51id2736obqr8dqxxycalb5.png)
Plotting the coordinate points on the graph we have;
Graphing the two equations, the solution to the system of equations is the point at which the two lines meet.
![\begin{gathered} (3,4) \\ x=3 \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d25z7dtw7bydo7nrrvxubzimb4lioyxdd6.png)