The vertices of triangle are given as,
![\begin{gathered} A(7,1) \\ B(1,-7) \\ C(1,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gg4wim7mb8dnocrbnip8ewcv438z19y7dd.png)
Also given that M is the midpoint of side AB,
![AM=MB](https://img.qammunity.org/2023/formulas/mathematics/college/ojnl2as3jpkfisda7pt2tkm0rqj80bztdl.png)
The corresponding diagram is given below,
Consider that the coordinates of the midpoint of a line segment is the average of the coordinates of the endpoints.
So the coordinates of point M (x,y) will be,
![\begin{gathered} x=(7+1)/(2)=(8)/(2)=4 \\ y=(1+(-7))/(2)=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3anwoqqdou7zshmsy7m4mccpb0noycy6ld.png)
It is found that the coordinates of point M are (4,-3).
Consider the distance formula to obtain the distance between two points,
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
The distance between A (7,1) and M (4,-3) is calculated as,
![\begin{gathered} AM=\sqrt[]{(4_{}-7)^2+(-3-1)^2} \\ AM=\sqrt[]{(-3)^2+(-4)^2} \\ AM=\sqrt[]{9+16} \\ AM=\sqrt[]{25} \\ AM=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9w11x3uuyiayss5pv9xnzdz54jcs82kv1d.png)
The distance between B (1,-7) and M (4,-3) is calculated as,
![\begin{gathered} BM=\sqrt[]{(4-1)^2+(-3-(-7))^2} \\ BM=\sqrt[]{(3)^2+(4)^2} \\ BM=\sqrt[]{9+16} \\ BM=\sqrt[]{25} \\ BM=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e7ny4ecwa54ckimkau7423xu5521qwvegs.png)
The distance between C (1,1) and M (4,-3) is calculated as,
![\begin{gathered} BM=\sqrt[]{(4-1)^2+(-3-(-7))^2} \\ BM=\sqrt[]{(3)^2+(4)^2} \\ BM=\sqrt[]{9+16} \\ BM=\sqrt[]{25} \\ BM=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e7ny4ecwa54ckimkau7423xu5521qwvegs.png)