Given:
![3x^3+x^2-20x+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/645lj8ten0thtsb33hzmvf3go17vg9zhbp.png)
Factor: x+3
To find the zeros:
Using synthetic division,
So, the polynomial can be written as,
![3x^3+x^2-20x+12=(x+3)(3x^2-8x+4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nmms0pqfpsts08fh7ryfxm3gx7srxkigch.png)
Let us consider,
![p(x)=3x^2-8x+4](https://img.qammunity.org/2023/formulas/mathematics/high-school/um4cai170nqwqdg0kw9boprvocf0nbge10.png)
Put x=2, we get
![\begin{gathered} p(2)=3(2^2)-8(2)+4 \\ =12-16+4 \\ =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a3p5evdak2rvqj0ehuivq2yojpw03ixvcb.png)
Hence, x=2 is the other one zero of the polynomial.
Put x=2/3, w get
![\begin{gathered} p((2)/(3))=3((2)/(3))^2-8((2)/(3))+4 \\ =(4)/(3)-(16)/(3)+4 \\ =-(12)/(3)+4 \\ =(-12+12)/(3) \\ =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qjjonnvpao7jj551rd7w7yqmgbzzuebidh.png)
Hence, x=2/3 is the other one zero of the polynomial.
Hence, the zeros of the polynomial are,
![-3,(2)/(3),\text{ and, 2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/g1apcqmbrkqjswpyzlvqu0lpn1kn47mawq.png)