Not factorable
Step-by-step explanationgiven
![8x^2-9x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/kvw4utmf8fwec3zt96so4d1etpunjivs2c.png)
Step 1
given
![8x^2-9x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/kvw4utmf8fwec3zt96so4d1etpunjivs2c.png)
use the quadratic formuña
it says
![\begin{gathered} for \\ ax^2+bx+c=0 \\ the\text{ solution for x is} \\ x=(-b\pm√(b^2-ac))/(2a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jyzg664qzczk7f2gtbn2c0eo5k6k87y0u0.png)
so
If Δ=0 then ax2+bx+c is a perfect square trinomial, expressible as
(√ax+√c)2 or as (√ax−√c)2 .
If Δ<0 then ax2+bx+c has two distinct Complex zeros and is not factorable over the reals. It is factorable if you allow Complex coefficients
![\begin{gathered} \Delta=b^2-4ac \\ \Delta=(-9)^2-4(8)(-3) \\ \Delta=81+96 \\ \Delta=177 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oh23fl1w3dyufnr3i34vk9w4jov7hmxdqb.png)
then, as
![\Delta>0](https://img.qammunity.org/2023/formulas/mathematics/high-school/kg5kmiysfyweeg6re64ow8iag48zghnhhx.png)
the expression has two distinct Real zeros and is factorable over the Reals
so,
the expression has real solution ,so
Not factorable
I hope this helps you