Answer:
![\frac{a^2\sqrt[]{3}+3a\sqrt[]{4b^2-a^2}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/yq95hqghb2zipii2hgz3anqj3iesakjbcn.png)
Step-by-step explanation:
The diagram of the tetrahedron showing the given dimensions is attached below.
The tetrahedron has 4 faces:
• One equilateral triangle with side lengths a.
,
• Three Isosceles triangles with side lengths b-b-a.
First, we find the area of the base.
![\begin{gathered} \text{Area of equilateral triangle}=(√(3))/(4)s^2\text{ where s=side length} \\ \implies\text{Area of the base}=\frac{\sqrt[]{3}}{4}a^2\text{ units squared.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s5okdj1z3ki7x3i2l0ukokz3m00md5mdbr.png)
Next, we begin finding the area of one isosceles triangle.
First, find the perpendicular height, h using the Pythagorean Theorem.
![\begin{gathered} b^2=((a)/(2))^2+h^2 \\ \implies h^2=b^2-(a^2)/(4)\implies h^{}=\sqrt{(4b^2-a^2)/(4)} \\ \implies h^{}=\frac{\sqrt[]{4b^2-a^2}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrkzpdbxts0m9jxwrck02yt16aiigwcmmt.png)
Thus, the area of one isosceles triangle is:
![A=(1)/(2)* a*(√(4b^2-a^2))/(2)=\frac{a\sqrt[]{4b^2-a^2}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/skm89xhkneacabb8tj8b1vl8j44ieed7mw.png)
Finally, the area of the tetrahedron will be:
![\begin{gathered} \text{TSA}=\frac{a^2\sqrt[]{3}}{4}+\frac{3a\sqrt[]{4b^2-a^2}}{4} \\ =\frac{a^2\sqrt[]{3}+3a\sqrt[]{4b^2-a^2}}{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/58ufa3jd21z15al8qypayh9phl4s18dfrt.png)