![y=ab^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/hye5rg1h8wj3ohgdt4j1vpepdhoym0w9ex.png)
we need to find the value of a and b
The points given are (0, 5) and (1, 15)
For the first point (0, 5)
![5=ab^0](https://img.qammunity.org/2023/formulas/mathematics/college/3bntv5tbfvxxz0bekk28m0pdspf4ibb381.png)
![5=a](https://img.qammunity.org/2023/formulas/mathematics/college/sgblupz5i8zj3lqfnwbr9fpwdabx519d6y.png)
The second point is (1, 15)
substitute the points in the formula
![15=ab^1](https://img.qammunity.org/2023/formulas/mathematics/college/1ovz1m9hd6k8h2z31ktumub1wdmmbkqhyr.png)
substitute a=5 and solve for b
![15\text{ =5b}](https://img.qammunity.org/2023/formulas/mathematics/college/2xe8s16z8eu1tjbee0pp68t4r1yfjo4vzo.png)
Divide both-side of the equation by 5
![3\text{ = b}](https://img.qammunity.org/2023/formulas/mathematics/college/6zyyv3qux1ot9qxz19nrofmlmw8lop3m45.png)
To write our equation, we will simply substitute a=5 and b =3 into the formula
Thus the equation is:
![y=5(3)^x](https://img.qammunity.org/2023/formulas/mathematics/college/3javbrpbvxjmoy7rgaj22yv03de02s3ooc.png)
b)Below is the attached graph